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ABSTRACT

In the literature n'f point estimation, Cauchy distribution with location

* parameters was often cited as an example for the failure of maximum likelihood

method and hence the failure of likelihood principle in general. Contrary to

the above notion, we proved, even in this case that the likelihood equation

has multiple roots, that the maximum likelihood estimator (the global maximum)

remains as an asymptotically optimal estimator in the Bahadur sense.

AMS 1970 Subject Classification: -Primary 62F20 Secondary 62E10.

Key Words and Phrases: Likelihood function, maximum likelihood estimator,
likelihood equation, Cauchy distribution, consistent estimator, first-order
efficient, second-order efficient.
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1. INTRODUCTION

For point estimation the parameter e, the likelihood principle (see

Fisher (1922, 1925)) yields the maximum likelihood estimator (m.l.e.) 6.

There are considerable literatures studying various properties of m.l.e.

The use of m.l.e. has a long history and may go back to Gauss and

Edgeworth. For general review, it can be found from recent articles by

Edwards (1972) and Norton (1972). The maximum likelihood method is a

very controversial and emotional issue throughout the history of statis-

tical point estimation. Recently there have been many articles still

interested in this issue, to name a few, Berkson (1953, 1980), Efron

(1975, 1982), Kraft and LeCam (1956), Rao (1980), Ferguson (1982), Fu

(1982), and Reeds (1985).

Let X, ...,Xn be n independent identically distributed (i.i.d.) ob-

servations having density function f(xl@), where 8 is a fixed value in

the parameter space 0. Given the data s = (xI .... ,xn), the likelihood

function of 8 is defined by

n
(1.1) Ln(ejs) = n f(xile).

i1l

For given s, the maximum likelihood estimator dn(S) for e is a value in

the parameter space 0 which maximizes the likelihood function (1.1): i.e.

in
(1.2) Ln( n(S)Is) max n f(xile).

9BEO i=l

The standard method to obtain the maximum likelihood estimator 6n(S)

is to find the root (or roots) of the following equation

(1.3) (1)(61s) = d log Ln(81s) = 0.n ' d6

The equation (1.3) will be referred to as the likelihood equation.

N > °
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Cramer (1946, p.500) proved that, under certain regularity condi-

tions, there exists a sequence of roots 6n(s) of likelihood equation

(1.3) which converges in probability to e as n tends to infinite. Since

then the consistency (or strong consistency) of maximum likelihood

estimator has been studied by many researchers, for example, Wald (1949),

Wolfowitz (1953, 1965) and LeCam (1953, 1970). Under certain regularity

conditions, the maximum likelihood estimator en(s) is also asymptoti-

cally normally distributed with asymptotic variance v(B) achieving the

Cramer-Rao lower bound; i.e., for any estimator Tn(s)

(1.4) Vin(Tn(s)-8) -) N(0,v(O)), as n

then

(1.5) v(e) a i/I(e)

where 1(0) is Fisher information and the equality holds when Tn(s) is

maximum likelihood estimator. Hence the m.l.e. is an asymptotically

efficient estimator.

An example which was mostly cited in the literature for the failure

of likelihood principle is when observations were sampled from a Cauchy

distribution with a location parameter 8. For given s = (xl,...,xn) it

has likelihood function

n1
(1.6) Ln(els) = 11

i=1 1T(+(xi-e) 2 )

and likelihood equation

(1.7) (p) (n 2(8-xi)

(1.7) =0.
n i-i 1+(xi-8) 2

The major reasons that the Cauchy distribution is often cited as an

example for the failure of maximum likelihood method of estimation, hence

. . .b..%.- . , " ',, ' . ' "% "% -' '
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the failure of likelihood principle in general (for example, Berkson

(1980), Ferguson (1978) and Reeds (1985)), are as follows:

(a) The likelihood equation (1.7) associates with a polynominal

-' with (2n-l) degrees. Hence it has (2n-l) roots (real and complex). The

number of roots increases as the sample size increases.

(b) Neither analytical nor numerical solutions of the likelihood

equation (1.7) can be obtained easily when sample size is moderately

large.

(c) All the real roots, but one (the global maximum: m.l.e.), of

the likelihood equation tend to +I or -- in probability as n- (see Reeds

(1985)).

(d) The asymptotic efficiency of maximum likelihood estimator (the

global maximum) still remains unknown.

The main purpose of this paper is to show that the maximum likeli-

hood estimator 6n(S) (the global maximum) converges to e exponentially

and is an asymptotically efficient estimator in the Bahadur sense.

2. Main Results

Fu (1971, 1973) proved that for any consistent estimator Tn(s) and

E >0

(2.1) log P( ITn(s)-81>) -B(e,E)" n - n

and
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(2.2) - log P(ITn(s)-eIa) a -I(e)/2E-0 n- n 2

where I(e) is Fisher information and B(e,E) is Bahadur bound defined by

(2.3) B(6,) = inf{K(e',e): Ie'-eI>E}

and the Kullback-Liebler information K(e',e) is given by

(2.4) K(8',e) = r ( log f(x ) f(xl')dx.

2 jC f(xle)

The inequalities (2.1) and (2.2) provide an important conclusion in

large sample theory of estimation that for any consistent estimator Tn(s)

the E-tail probability

(2.5) cn(Tn,8,C) = P(ITn(s)-6IZE)

cannot tend to zero faster than the rate exp{-n[B(8,c )+o(l)]) (for fixed

E) or the rate exp(-nI(9)E2 /2) (for E near the zero) tends to zero. The

estimator achieving the bound (2.2) is referred to as first-order

efficient estimator in the Bahadur sense.

For given s, let in(s) and 0n(s) be the largest and the smallest

real roots of the likelihood equation (1.3) respectively and the maximum

likelihood estimator 6n(S) be a root of (1.3) which maximizes the

likelihood function (1.7) (i.e. n (s) is a global maximum). It follows

"(2.6) 26n(S) 1 gn(S) 1 in(s)

, and for any e > 0, the following inequalities hold

(2.7) P -n(s)Ze+E) 1 Kin (sle+ )Z°) I(i) p(in(S) + )

and

.k'
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(2.8) P(On(s);8-E) < P( Z(1)(s 1-E)O) kP( (S)-E)
n

If the likelihood equation (1.1) has a unique root for every s then

0n(s) = On(s) = O_(s). Hence inequalities (2.7) and (2.8) yield the

following inequalities

(2.9) P(n S+€) = P(z (1) si6+E)0),n n

and

(2.10) P(Gn(s);e-E) = P(Z (1)(Is-E)0).
n

Under this assumption of unique root of likelihood equation (hence

unique m.l.e. 6n(s)), Fu (1973) proved

(2.11) lim lim -1- log P(I6n(s)-OktE) = -1(0)/2.
c-)0 n- nE2

Hence the m.l.e. 6n(s) is an asymptotically efficient estimator in the

Bahadur sense.

For the Cauchy distribution, it is clear that the condition of

unique root of likelihood equation is violated. Whether, in this

case, the m.l.e. gn(S) remains as an asymptotically efficient estimator was

listed as a conjecture in the papers of Fu (1982) and Rubin and Rukin

(1983). The following theorem gave a positive answer to the conjecture.

Theorem: For e> 0 sufficiently small, we have

(2.12) lim 1 log P(len(s)-ZE)=5 ~n--

where

(2.13) 0(0,0,c) = E2(I+0(V/E))14.

and 0() stands for 0(V)/VE - constant as e - 0.
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The mathematical proof of this theorem is extremely hard and tedious. We

leave the proof in the next section.

One may note that the above exponential rate 0(6,6,E) is independent

of 6. This is due to the fact that 8 is a location parameter. Similarly

the Fisher information I(8) of the Cauchy distribution is

" 2(8-x) 2 1

(2.14) 1(8) = ( ) 2 -
.1+(X-8)2 2

which is also independent of 8. Results (2.13) and (2.14) together give

(2.15) lim B(6,8,E)/E2 = 1(6)/2

Hence the maximum likelihood estimator 8n for location parameter of

Cauchy distributions is an asymptotically efficient estimator in the

Bahadur sense.

The properties (a) and (b) of likelihood equation (1.7) of Cauchy

distribution couldn't be altered. In view of Reeds' and our results, the

m.l.e. 6n converges to 8 exponentially with the optimal rate. One could

not consider the Cauchy distribution as a major example for the failure

* . of maximum likelihood method of estimation.
4.

3. Proof of Main Theorem

Let Xl, X2 ,,... be a sequence of i.i.d. bounded random variables with
n

mean zero, Var(X I) = o2 > 0, and IXI1<M. Write Sn = E Xi . To prove our
i=1

theorem we need the following lemmas.

I.

'p.o
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Lemma 1. For any C>, when n is sufficiently large then

(3.1) P(ISniI>En) _ 2 exp{- EM
n 2a2 2a2

2
Lemma 2. For any 0 < E < a when n is sufficiently large then

(3.2) P(Snk-En) > 2 exp{- -2n (1 + 5
202 I/ o2

The above lemmas can be proved by the same methods used for Lemma 1 and

Lemma 2 in Chapter X, Petrov (1975). We omit the proofs.

Proof of Main Theorem:

Without loss of generality, we can assume that the true value of 8

equals zero and that {Xn}, n = 1,2,... will represent a sequence of

i.i.d. standard Cauchy random variables with common density function

(3.3) f(x) = 1 for all xE(--,).
n(l+x 2 )

The E will stand for expectation with respect to the standard Cauchy

distribution. Let 8 be the variable of following log-likelihood function

n
(3.4) Sn(8) = Z log (1+(Xi-e) 2 ).

i=l

It follows

E(3.5) Sn(8) = log (82+4).
n

Take
= 1 +1 - o )1 1

(3.6) 6 1 (log(4 + ) log 4)= log (1 + 1) 0.0152,4 4 4 16

and define

(3.7) An(O) = {Sn(8) < n(log 4 + 26)),

iw
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%' then we have, for any tc(0,i/4),

* (3.8) P(An(8) = z log 62+4 n(log 4+e2 26))
4i=l +(Xi-6)2 4

"exp{-nt(log A- 2}))]E{expft log e2+4 ]}n
4l+(Xl- )2

4+e2 cotk @2+4 k n
= [exp{-nt(log -26)}1{1+ 2-= E(log- .).}n .

k=2k11(l62

If 8 > 0 and X1 < - then

_______2+4 82+4
(3.9) log 2< log = log 4.

i+(Xi-8) 2  1+92/4p8
If 8 > 0 and X 1 > 2 then

2 1

(3.10) P(X1 > ) - < and
2 irO 8

A.. (3.11) log 2+4 _ <log (82+4).
1+(X,-e )2

Thus (3.9), (3.10) and (3.11) yields

(3.12) g(log <2+4 k (log4)k + (log(8 2+4))k.l+(x1-e)21 =

Inequalities (3.8) and (3.12) imply that for 8 > I,

282+4

VA.;', (3.13) P(An(6)) - exp{-ntt(log 26) -

I where

"., -.. 11( 8+4 )1/4(3.14) A [iog 24 + 1 sup (4 log2(e2+4))].

28>1/2a

... ~/

,...

A. ~ * V . . . ~ ~ .~. - * . .* - . '
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Taking t = 6/A and inserting it into the inequality (3.13), we get, for

e > 1
82'

(3.15) P(An(0)) 1 exp{-nA-(log - 02+4 36))." 4

Similarly, the inequality (3.15) also holds for 8 < -1i2

Let Ok = + k6, k = 0,1,2,.... It follows from (3.15) that we have

for n sufficiently large,

0 4+k + )2
(3.16) Z P(An(Ok)) 1 Z exp{-n6A-l(log 4 +

k=O k=O

1 2 exp{-n62A-1 ).

Note that

1 S )() 1 n 2(O-X i)
(3.17) n I S 1.

n n i=l l+(0-Xi)2

if "E(ekOk+l) and I Sn(S) S log 4 + 6 then
n

(318) 11 1 O +I 1
Sn(Ok) n Sn(e) + (- Sn('k) - Sn(e))

2L S(1)( )

Sn(e) - (6-0k)(" Sn &)

1 log 4 + 26.

Hence

(3.19) P(Sup 2 Sn(e) log 4 + 6)e>i nn() lg4+6

P( U A(- Sn(ek) 6 log 4 + 26))
k=0

E P( n(k)) ; 2 exp{-n62 /A}.
k=0
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By the same token we have

1

(3.20) P(sup n(e) log 4 + 6) 1 2 exp(-n6
2/A}.

0<-1

Inequalities (3.19) and (3.20) imply that

(3.21) P( sup 1 Sn(e) 1 log 4 + 6) 1 4 exp{-n62/A}.gel>-
2

On the other hand, we have for tc(0,1/4)

(3.22) P( -Sn(0) a log 4 + 6) - p og - 6 )

n n Zlgi=1

l+Xl 2

(exp{-n6t}](E exp{t log +4)n

Since

l+X12 fo1l

E exp(t log 4 J< " forallt -

and I+X12

E log 4 0

thus there exists a constant A > 0 such that

I+XI 2  t2  t2

(3.23) E exp(t log 4 S I + 2 A S exp(-2 A}

for all sufficiently small positive t. Therefore

(3.24) e(P Sn(0) > log 4 + 6) S exp{-nat +nt2
(32) n e;7-~ +-A1

Taking t = 6/A, we have

(3.25) P(1 Sn(O) a log 4 + 6) ! exp(-n62 /2A}.
n

Now we consider the case when 8c(- -,j). Note that

2 ' = * .'. "
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(2)n I-(0-Xi2)
(3.26) S(2)() = 2 nn i=1 (i+(e-Xi)2)2

and

(3.27) E 1 S(2) (e) = 8-2e2
n n (62+4)2

Hoeffding (1965) proved that if Xl,..,Xn are independent and

ai ;< Xi S bi then, for t > 0 the following inequality holds

n n n
P( Z Xi - EXi > nt) ! exp{-2n2t2/ £ (bi-ai) }.

i=l i=l i=l

Since

(3.28)2(I-(Xi-8) 2 )
(3.28) _ 1 < S< 2

4 (1+(X_-8)2)2

it follows from Hoeffding's inequality that we have

*, P( 1 S ( ) )
n n5

'= n 8-202 2(1-(X,-8) 2) 8-2_ 2  1

(3.29) -i=1 (82+4)2 (l+(Xi-e)2)2  (e2+4)2 5

(.1( n g -702 _2(1-(xi-e)2) 1

i=l (e2+4)2 (l+(Xi-e) 2 ) 2  25

. exp(-2n(-1)2], for all lell.75

Again, since

1.4e n (8-Xi)(3-(8-Xi ) 2

(3.30) In s( ) In -- n )23 S 6,'i--i (l+(Xi-e))

MOJA

MIMA
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if c(7 2(k+) )- and 1 S(2)(8) < -, then
7 75 n 'n 25

1 S(2)( 2k 1 S(2)(e) + (1 S(2)( 2 1 S(2) (0))
n n 7 nn) n n n

(3.31) -1 s(2)() + 2k _ 1 S(3)( k)(331 =n n (75 On n (k

L 2 *6 = 1
25+75 - 5

for k = -36, -35,...,35,36. Hence

(3.32) P( inf -I S(2 )(8) - 36 p Sn(2)(2k i

24n n25 k=-36

-S 75 exp{-2n(-1)-).<755

% .%

Now we define the following events

Anl = sup 1 Sn(e) I log 4 + 61,

*An2 = (n Sn(O) a log 4 + 6), and

An3 = { inf 1 S(2)(8) e:.S }n 25

Note that the m.l.e. 6n(s) minimizes Sn(8) and satisfies the likelihood

equation (8) = 0 If Ac and An2 occur simultaneously, then

n O 1(- 1 If c3 occurs then S (e) is strictly increasing on the

inera (- )4 If c, a nd Ac
interval )  if Acl , and simultaneously occur then, for

c(0,I ), 6n > c if and only if Sn(1 ) < 0. Hence2
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. C ACC

(3.34) P(&n(s) a ., Anl' An2  and A 3 )

= P(S( 1 )(E) < 0, Ac Ac and Ac
nAni' n2' n3

Note that

2(E-X1 ) 2E

(3.35) E = - ,i+( -Xl)2 E 2+4

by Lemmas 1 and 2, we have for C > 0 sufficiently small

(1) n 2e 2(c-Xi)(3.36) P(S n()<0) = P( I - ) > n
i=l c2+4 l+(E-Xi) 2  E2+4

= exp(- n ( 2__E. )2 ((c2+4)2 + 0(v,))
2 E 2+4 8-2E

exp- E c2(l + 0(VD)).
4

From the above results (3.20), (3.25), (3.32), (3.34) and (3.36), we have

(3.37) P(6n(S)>E) = exp{- 1 E2 (l + 0(16))1,

for E > 0 sufficiently small.

Similarly we have

(3.38) P(6n(s)<-E) = P(S(1)(-E)>0 )
n

= exp(- 11 + 0G'-))),

for c > 0 sufficiently small.
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Since Cauchy distribution is continuous and satisfies Bahadur's

condition (Bahadur 1971 p.9) hence equations (3.37) and (3.38) yield

P(16n(S)IZE) = exp{- ! E2(1 + 0(/e)))
4

for c > 0 sufficiently small. This completes the proof.

.

.1*,

.. .
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